翻訳と辞書
Words near each other
・ Kleisoreia
・ Kleisoura
・ Kleisoura (Byzantine district)
・ Kleisoura, Kastoria
・ Kleisoura, Larissa
・ Kleist
・ Kleist Museum
・ Kleist Prize
・ Kleist Sykes
・ Kleist Theater
・ Kleista Ta Stomata
・ Kleisti
・ Kleistos
・ Kleistpark (Berlin U-Bahn)
・ Kleitias
Kleitman–Wang algorithms
・ Kleitomachos
・ Kleitomachos (athlete)
・ Kleiton & Kledir
・ Kleiton Domingues
・ Kleitor
・ Kleitor (Village)
・ Kleitoria
・ Kleitos, Kozani
・ Kleiv Fiskvik
・ Kleive
・ Kleive Church
・ Kleive, Møre og Romsdal
・ Kleiwegkwartier
・ Kleiza


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Kleitman–Wang algorithms : ウィキペディア英語版
Kleitman–Wang algorithms
The Kleitman–Wang algorithms are two different algorithms in graph theory solving the digraph realization problem, i.e. the question if there exists for a finite list of nonnegative integer pairs a simple directed graph such that its degree sequence is exactly this list. For a positive answer the list of integer pairs is called ''digraphic''. Both algorithms construct a special solution if one exists or prove that one cannot find a positive answer. These constructions are based on recursive algorithms. Kleitman and Wang gave these algorithms in 1973.
==Kleitman–Wang algorithm (arbitrary choice of pairs)==
The algorithm is based on the following theorem.
Let S=((a_1,b_1),\dots,(a_n,b_n)) be a finite list of nonnegative integers that is in nonincreasing lexicographical order and let (a_i,b_i) be a pair of nonnegative integers with b_i >0. List S is digraphic if and only if the finite list S'=((a_1-1,b_1),\dots,(a_-1,b_),(a_,0),(a_-1,b_),(a_,b_),\dots,(a_n,b_n)) has nonnegative integer pairs and is digraphic.
Note that the pair (a_i,b_i) is arbitrarily with the exception of pairs (a_j,0). If the given list S digraphic then the theorem will be applied at most n times setting in each further step S:=S'. This process ends when the whole list S' consists of (0,0) pairs. In each step of the algorithm one constructs the arcs of a digraph with vertices v_1,\dots,v_n, i.e. if it is possible to reduce the list S to S', then we add arcs (v_i,v_1),(v_i,v_2),\dots,(v_,v_),(v_i,v_). When the list S cannot be reduced to a list S' of nonnegative integer pairs in any step of this approach, the theorem proves that the list S from the beginning is not digraphic.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Kleitman–Wang algorithms」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.